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Abstract
The resistivity and Hall resistivity of semimetallic antimony were measured from 2 to 300 K in
magnetic fields up to 14 T. We found that in low field, the resistivity shows metallic behavior.
In a modest field, the resistivity decreases to a minimum and then increases with decreasing
temperature, showing a metal–insulator-like transition. In high field, the resistivity drops at low
temperatures, showing an insulator–metal-like transition. The metal–insulator-like behavior can
be explained by the competition of zero field resistivity and magneto-resistance, which is
reciprocal to the zero field resistivity. The insulator–metal-like behavior can be explained by the
imbalance of two carrier densities which changes the magneto-resistance from being reciprocal
to proportional to the zero field resistivity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Semimetals, such as bismuth (Bi), antimony (Sb) and graphite,
have almost compensated electron and hole densities, which
lead to large magneto-resistance(MR) [1]. This large MR
has been explained by the two-band model qualitatively for
decades [2]. Because semimetals also have low carrier
densities, high carrier mobilities and small effective masses,
a moderate magnetic field can drive these materials into
the quantum regime, where only the lowest Landau level is
occupied [3]. So in these materials, it is doubted whether
the MR can be explained by conventional two-band theory
especially near or in the quantum regime. Recent studies on
graphite and Bi reveal some new phenomena which now place
the question on the agenda.

Kempa et al [4–6] reported a magnetic field-induced
metal–insulator (MI)-like behavior in highly oriented pyrolitic
graphite (HOPG). The in-plane resistivity changes from a
metallic behavior to an insulating-like temperature dependence
under a magnetic field above 10 mT. This transition can be
scaled with a critical Bc, so there could be an insulating
gap opening at the critical field [7, 8]. This change occurs
only in the configuration of field perpendicular to the graphite

layers [9] and resembles other 2D materials [10–14] which
have an MI or insulator-to-superconductor (IS) transition.
The two-dimensional limitation has been thought to play an
important role. However, graphite single crystals [15] and Bi
crystals [16–18] also show similar behavior to HOPG, which
excludes dimension effects.

Tokumoto et al [19] measured the thermopower of a
HOPG and indicates that the material remains metallic when
resistivity shows insulating-like temperature dependence, so
there is no evidence for the existence of a gap. They found
that a simple two-band model can qualitatively describe the
MR behavior. Du et al [18] also used the conventional multi-
band model to fit the longitudinal and transverse resistivity
of graphite below 1 T. They derived carrier densities and
scattering times, and found a unique inequality of three energy
scales in semimetals, h̄/τ � h̄ωc � kBT , where h̄/τ is
the width of the energy levels and τ is the electron phonon
scattering time, h̄ωc is the cyclotron energy, kBT is the thermal
energy. In a wide interval of temperatures and magnetic
fields defined by these energy scales, due to the compensation
between electron and hole carriers, the graphite and Bi have
the unusual MI-like behavior. Therefore, the MI-like behavior
can be interpreted by the conventional theory.
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Figure 1. The x-ray diffraction pattern of a single crystal of Sb with
surface perpendicular to the c-axis.

When the magnetic field is increased further, the in-
plane resistivity has a maximum with decreasing temperature
and then shows metallic behavior which is like a insulator–
metal (IM) transition. This behavior is the so-called reentrant
metallic behavior [15] which occurs at about 0.2 T for Kish
graphite and 4 T for HOPG, and the field at which the reentrant
behavior occurs is sample dependent. Bi also shows the
reentrant behavior above 0.5 T [17]. Kopelevich et al [15, 17]
suggested this phenomenon is attributed to field-induced
superconductivity which occurs when the system reaches the
quantum limit. The quantum Hall effect and Landau-level-
quantization-induced superconducting correlation should be
considered to account for IM-like behavior. It challenges the
conventional two-band theory. However, no clear evidence
of superconductivity is observed in these samples under high
magnetic fields.

The MI- and IM-like behaviors are novel phenomenon
observed in graphite and Bi. It would be interesting to know
whether any other semiconductors with similar behaviors exist,
and whether these behaviors could be understood within the
two-band model. In this paper, we study the resistivity and
Hall resistivity of Sb. We have found that Sb, which has a
similar crystal and band structure to Bi, also has MI and IM-
like behaviors. The carriers densities of Sb are almost T -
independent, however the carriers densities of graphite and
Bi change obviously with T [20]. So the resistivity of
Sb is dominated only by the mobility, which simplifies the
discussion. We have found that both MI-and IM-like behaviors
can be explained by two-band model.

2. Experimental results and discussion

Crystals with a purity of 99.999% are a commercial
product obtained from the ‘Beijing General Research
Institute for Nonferrous Metals’. Figure 1 shows the
x-ray diffraction (XRD) pattern. That only three well
indexed sharp peaks can be seen from the XRD pattern
indicates that the sample is really a high quality single
crystal with lattice parameter c = 11.27 Å. The
samples for resistivity and Hall resistivity measurements are
cleaved from the crystal with surface perpendicular to the

Figure 2. The temperature dependence of in-plane longitudinal
resistivity for Sb with the magnetic field along the c-axis. From the
lowest curve to the highest one, the magnetic fields are 0, 0.1, 0.2,
0.5, 1, 2, 5, 10, and 14 T, respectively. The inset magnifies the low
temperature region, and ρxx is normalized by ρxx (2 K). Tmin (Tmax)
marks the temperature where ρxx has a minimum (maximum).

c-axis. The dimensions of samples are about 2 × 0.4 ×
0.04 mm3. The in-plane resistivity and the Hall resistivity
are measured in a Quantum Design physical property
measurement system (PPMS) with temperatures down to 2 K
and magnetic field up to 14 T. The sample is placed on a
rotating sample holder to measure the angular dependence of
magneto-resistivity. The Hall voltage was extracted from the
antisymmetric parts of the transverse voltages measured under
opposite directions, to remove the longitudinal component due
to the misalignment of the Hall voltage pads.

Figure 2 shows the temperature dependence of resistivity
in the configurations of current I ⊥ B and B ‖ c. In
low field, resistivity is metallic and decreases with decreasing
temperature T . In a modest field, with decreasing T , the
resistivity first decreases and reaches a minimum at Tmin

and then increases, which is similar to the MI-like behavior
observed in graphite and Bi [6, 18]. In a high field, with
decreasing T , the resistivity increases and reaches a maximum
at Tmax, and then decreases again (see the inset of figure 2). It is
also similar to the IM-like behavior observed in graphene and
Bi [17].

The in-plane resistivity versus the angle θ between
magnetic field B and current I is shown in figure 3, where
B is rotating within the ab plane. When B ‖ I , i.e. θ = 0◦ or
180◦, no magneto-resistivity can be discerned. When B ⊥ I ,
magneto-resistivity reaches a maximum. The curves can be
fitted using the formula: ρxx (θ) = ρ0 + �ρ sin2 θ , where
ρ0 is the zero field resistivity and �ρ = ρxx (90◦) − ρ0.
This implies that the magneto-resistivity is dominated by the
current I direction, rather than by the crystal axis direction.
In the Lorentz-free configuration with B ‖ I , there is no
Lorentz force on the carriers and there is no magneto-resistance
due to orbital effects, which only leaves the spin-related MR
which is independent of current direction [17]. However, in
this configuration no MR can be discerned. So the MR has
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Figure 3. The angular dependence of the resistivity ρxx at 2 K, with
configuration of I in the ab plane and B rotating within the ab plane.
θ is the angle between B and I .

nothing to do with spin-related effects and is governed by
orbital effects.

The temperature dependence MR for a semimetal with
two kinds of carriers can be described by the two-band model,
where the resistivity can be expressed as [21–23]

ρxx = ρ1ρ2(ρ1 + ρ2) + (ρ2/n2
1 + ρ1/n2

2)(B/e)2

(ρ1 + ρ2)2 + (1/n1 − 1/n2)2(B/e)2
(1)

where ρi = 1/(ni eμi) = m∗
i /(ni e2τi ) are the resistivity

of an electron and hole in zero field, respectively. The
parameter μi is the mobility, ni is the carrier density, m∗

i is
the effective mass, and τi is the relaxation time respectively.
The subscript i = 1, 2 denotes electron or hole. For Bi
and graphite, both the mobilities and carrier densities are
temperature dependent. For Sb, the carrier densities are
almost temperature independent [20]. Then we can attribute
the temperature dependence of resistivity to the temperature
dependence of carrier mobility.

For a semimetal, electron and hole densities are almost
compensated, so we can assume n = n1 = n2 to simplify
equation (1) into two terms:

ρxx = ρ1ρ2

(ρ1 + ρ2)
+ B2

n2e2(ρ1 + ρ2)
. (2)

The first term is the zero field resistivity ρ0 = ρ1ρ2/(ρ1 + ρ2),
which decreases with decreasing T , (see figure 1). The second
term is proportional to B2, and has an opposite temperature
dependence to ρ0. For a real semimetal, it is proportional to
B p where 1 < p < 2 [21]. Figure 4 shows the resistivity
as a function of field applied along the c-axis. By fitting high
field data, we can get p = 1.8 for Sb. The resistivity is almost
B independent at low field, where the second term is much
smaller than ρ0. With further increase in B , the second term
becomes larger than ρ0, so the resistivity will increase with
B . At high temperatures, the resistivity has a large ρ0, so the
high-T curves in figure 4 cross the low-T ones. On the left

Figure 4. Longitudinal resistivity ρxx versus applied field B for Sb
with the magnetic field along the c-axis.

side of the crossing, the resistivity decreases with decreasing T
but on the right side, the resistivity increases with decreasing
T . When different temperature curves cross at different field
B , there must be a region between two crossings where the
resistivity decreases first and then increases with decreasing T ,
showing MI-like behavior. For example, in figure 4 the 100
and 50 K curves cross at 2 T, then the resistivity at a magnetic
field of 1 T is on the left side of the crossing, therefore the
resistivity at 1 T decreases from 100 to 50 K. The 50 and 20 K
curves cross at 0.5 T, then the resistivity at 1 T is on the right
side of the crossing so the resistivity increases from 50 to 20
K. Therefore at 1 T, when temperature decreases from 100 to
20 K, there must be an MI-like behavior, as can be seen in
figure 2.

If we assume the electron resistivity is equal to the hole
resistivity then ρ1 = ρ2 = 2ρ0. Replacing B2 with B1.8 from
our experimental result for Sb, equation (2) can have the simple
form

ρxx = ρ0 + B1.8

(2ne)2ρ0
. (3)

The second term of the right side of equation (3) is inversely
proportional to its first term ρ0. So when the resistivity is
dominated by the magneto-resistivity, the curve plotted on a
logarithmic scale is like a horizontal mirror image of the zero
field resistivity ρ0 (see figure 2 14 T curve and 0 T curve).

In equation (3), we can see ρxx has a minimum at a
temperature Tmin where

ρ0(Tmin) = B0.9/(2ne). (4)

From figure 1, for a given field below 14 T, we have a
corresponding Tmin at which ρxx has a minimum value. In
figure 5, we plot the Tmin as the function of B0.9/(2ne) (closed
square), where the carrier density n = 5.32 × 1025 m−3 is
estimated by Liu et al [24]. We also plot zero field resistivity
ρ0 versus the temperature T in the same figure(solid line). It
can be seen that all the closed square symbols fall in the T
(ρ0) line. For an example for B = 0.2 T, B0.9/(2ne) =
1.38 × 10−6 � cm, which is the value of ρ0(T ) at 23 K. This
temperature is just where the minimum value of ρxx at B =
0.2 T appears(see figure 1). From the above discussion, the
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Figure 5. Temperature (T )-reduced magnetic field diagram. Tmin and
Tmax are defined in figure 2. x = B0.9/(2ne)) for Tmin(x) and
x = B0.9δ/(ne)) for Tmax(x), where n = 5.32 × 1025 m−3 and
δ = 0.01. T (ρ0), which is the inverse function of ρ0(T ), is also
plotted for comparison.

two-band model not only can describe the magneto-resistance
tendency but also can estimate the temperature at which the
MI-like behavior starts to occur.

To explain the IM-like behavior, we need to consider the
tiny difference between n1 and n2. In the two-band model, the
tiny imbalance between the densities of electrons and holes can
also change the temperature dependence of resistivity. We can
modify equation (1) as

�ρxx = (ρ2/n1 + ρ1/n2)
2(B/e)2

(ρ1 + ρ2)3 + (ρ1 + ρ2)(1/n1 − 1/n2)2(B/e)2
(5)

where �ρxx = ρxx − ρ0. Let us define δ = |n1 − n2|/n1,
assume n = n1 ≈ n2, ρ1 = ρ2 = 2ρ0, and replace B2 with
B1.8 then

1

�ρxx
= 4ρ0n2e2

B1.8
+ δ2

4ρ0
. (6)

The competition between the two terms on the right side
of equation (6) with increasing field B can explain the IM-
like behavior. In low field, the first term is much larger than
the second one so ρxx ≈ �ρxx ≈ B1.8/(4ρ0n2e2) which is
proportional to 1/ρ0. When B is large enough, the first term
will become smaller than the second term so ρxx ≈ �ρxx ≈
4ρ0/δ

2 which is proportional to ρ0. So �ρxx must have a
maximum with the change of ρ0. This maximum occurs at
Tmax where

ρ0 = B0.9δ/(4ne) (7)

Also using n = 5.32×1025 m−3 and ρ0(2 K) = 4×10−7 � cm,
for B = 14 T we can get |n1 − n2|/n = 0.013. Then
if |n1 − n2|/n > 0.013, �ρxx has a maximum above 2 K
and/or below 14 T. Some experiments and calculations found
ne/np = 1.01 ∼ 1.05 [24–26], which is sufficient to make �ρ

have a maximum below 14 T. However, the difference between
the two carrier densities is too small to distinguish precisely
due to the experimental error. In addition, Freeman et al have
suggested that the two carrier densities are equal [27]. The Hall
coefficient RH is very sensitive to the carrier imbalance. The

Figure 6. The magnetic field dependence of the Hall coefficient RH

which is scaled by the zero field value at 300 K.

two-band model gives [2]

RH = −1

e

(ρ2
2/n1 − ρ2

1/n2) + [(n1 − n2)/(n2
1n2

2)](B/e)2

(ρ1 + ρ2)2 + [((n1 − n2)2/(n2
1n2

2](B/e)2
.

(8)
If the electron and hole carrier densities are equal, RH

should not change with applied field. Figure 6 shows the
magnetic field dependence of the Hall coefficient at different
temperatures. RH is normalized by its zero field value at
300 K. We can see when temperature is below 20 K, RH

deviates from a constant, and the deviation become larger with
temperature decreasing. So the difference between electron
and hole densities does indeed exist.

For Sb, electron and hole carrier densities are T -
independent, so we can assume δ is also T -independent.
Therefore, equations (4) and (7) imply that Tmin and Tmax will
have the same B-dependent. In Sb, since Tmax happens at very
high field, only one Tmax data point can be obtained below 14 T
in our experiment. This Tmax as a function of B0.9δ/(ne) is
plotted in figure 5. Both Tmax and Tmin can be scaled to the
T (ρ0) curve. In graphite and Bi, although δ changes with
temperature, the field dependencies of both Tmin and Tmax show
similar behavior, see figure 3 in [17].

In the above discussion, we only treat the Lorentz effect
under magnetic field. Actually, the magnetic field also induces
Landau level quantization and make the resistivity show a
Shubnikov–de Haas (SdH) oscillation, as seen in figure 7.
However, this effect is much smaller than the Lorentz effect,
(see figure 4). So the Lorentz effect induced MR is dominant
and the SdH oscillation is just a small detail imposed on the
MR. Moreover, the existence of the SdH oscillation indicates
that Sb is in the metallic state.

The two-band model assumes a spherical Fermi surface
which does not agree with the actual material band
structure [20, 24, 28]. The effect of carrier interaction, which
is important in low carrier density systems and affects the
resistivity to some extent [29], is not taken into account either.
So the two-band model can explain the trend but fails to fit the
resistivity data quantitatively.
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Figure 7. Shubnikov–de Haas oscillations scaled with zero field
resistivity versus magnetic field B at 2 K. The background is
subtracted after polynomial fitting. The magnetic field B is along
the c-axis.

3. Conclusions

In conclusion, the MR of Sb, like that of Bi and graphite, shows
both MI-and IM-like behaviors with decreasing temperature.
These behaviors can be explained by the classical two-band
model. The magnetic field has two effects on resistivity: the
MR induced by the Lorentz effect and the SdH oscillation
induced by Landau level quantization. In low field or high
temperature, these two effects are both smaller than the zero
field resistivity, so the resistivity is dominated by the zero
field resistivity and shows metallic behavior. In modest field
and temperature, the resistivity is dominated by the Lorentz
effect, the MR is larger than the zero field resistivity, so the
resistivity shows an insulator-like behavior. In high field and
low temperature, although the SdH oscillation appears, the
Lorentz effect is much larger than the Landau level effect,
so the resistivity is still dominated by the Lorentz effect.
However, the carrier imbalance becomes dominant in the two-
band model equation and changes the resistivity from an
insulator-like behavior to a metallic behavior.
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